

The (GAMS) Transport Problem

Practical CGE, 2025

© cgemod

1

cgemod

Outline

- Introduction
- Basic LP programmes
 - The diet problem
 - Comparative advantage
- The GAMS Transport Problem
 - Standard algebraic presentation
- Structure of a GAMS Programme
- The Transport Problem in GAMS Code
- Next

Practical CGE, 2025

2

Introduction

- A classic linear programming (LP) problem
 - LP and CGE problems are optimisation problems
 - LP problems are a slightly simpler starting point
 - AN LP problem can demonstrate all the key elements in a GAMS programme
- The GAMS tutorial uses this LP programme
 - A printed copy of the GAMS tutorial may prove helpful.

Practical CGE, 2025

© cgemod

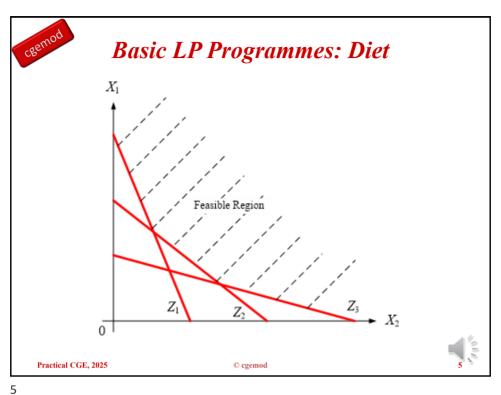
3

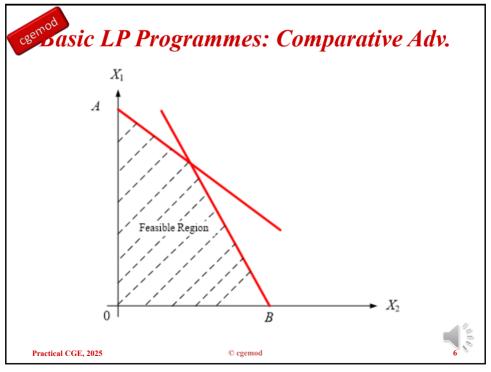
Basic LP Programmes: Diet

- The diet problem
 - OBJ: minimise the cost (C) of achieving a minimum consumption of three nutrients (Z_1, Z_2, Z_3)
 - STO: the two available food commodities (X_1, X_2) supplying the nutrients in different ratio (a_{ij})

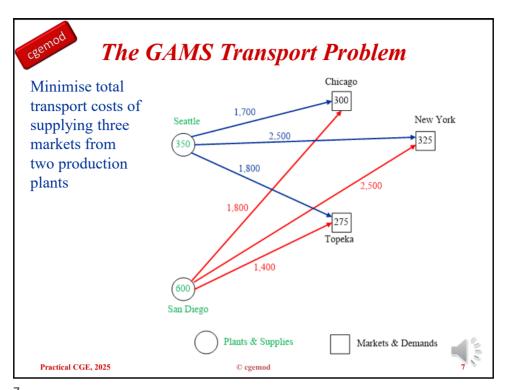
$$\min C = p_1.X_1 + p_2.X_2$$

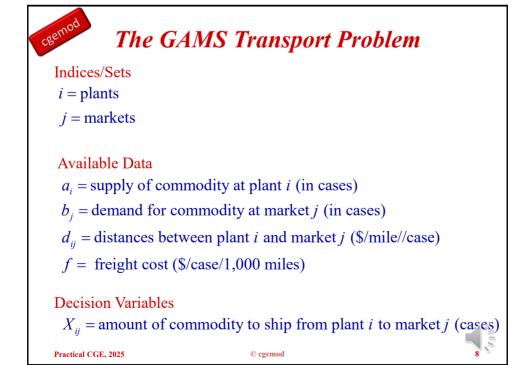
$$\text{sto}$$


$$a_{11}.X_1 + a_{12}.X_2 \ge Z_1$$


$$a_{21}.X_1 + a_{22}.X_2 \ge Z_2$$

$$a_{31}.X_1 + a_{32}.X_2 \ge Z_3$$


Practical CGE, 2025



/

cgemod

The GAMS Transport Problem

Constraints

Supply limit at plant *i*:

$$\begin{split} & \sum_{j} X_{ij} \leq a_{i} & \forall i \\ & \sum_{i} X_{ij} \geq b_{j} & \forall j \\ & X_{ij} \geq 0 & \forall i, j \end{split}$$
Demand at market *j*:

Objective Function

 $\sum_i \sum_j c_{ij} X_{ij}$ Minimise

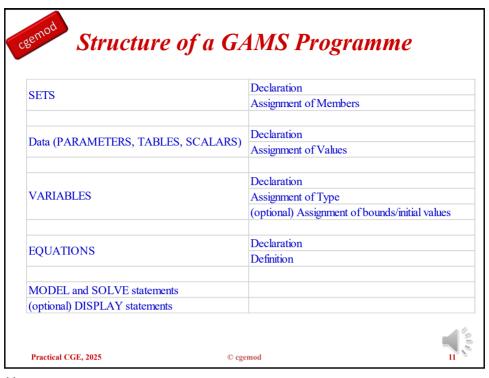
Practical CGE, 2025

The GAMS Transport Problem

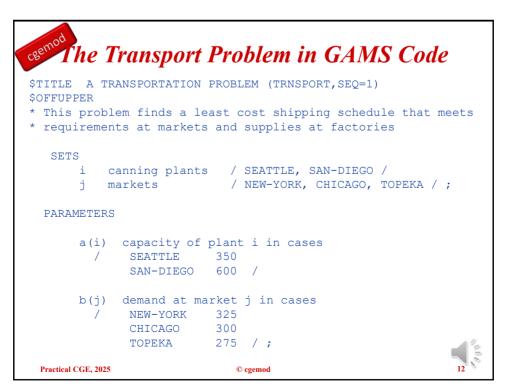
Data

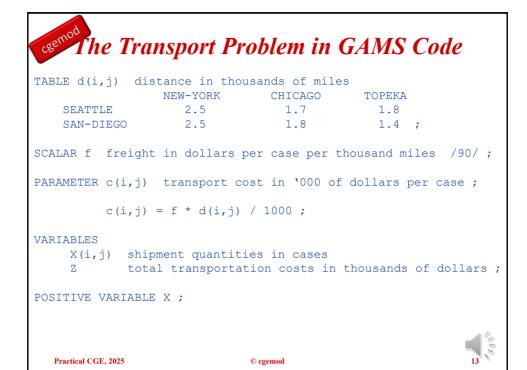
		Markets		
Plants	New York	Chicago	Topeka	Supplies
		(Distances '000 m)		
Seattle	2.5	1.7	1.8	350
San Diego	2.5	1.8	1.4	600
Demands	325	300	275	

Freight Cost


\$90 per case per 1,000 miles

Practical CGE, 2025


© cgemod


10

11

cgemod

13

sernod The Transport Problem in GAMS Code

Practical CGE, 2025

© cgemod

Next

- **Transport Problem Exercises**
- Exploring the transport problem model
- Debugging a GAMS model
 - Syntax errors
 - Execution errors
- Changing the model
 - Changing unit transport costs
 - Changing distances
 - Adding a new markets
 - Adding intermediate (wholesale) markets

Practical CGE, 2025

© cgemod

15

The (GAMS) Transport Problem

The End

Practical CGE, 2025

16

